Transcriptomic Response of Escherichia coli O157:H7 to Oxidative Stress
Autor: | Qian Wang, Mary Lou Tortorello, Kaiping Deng, Chiahui Lin, Siyun Wang, Wei Zhang, Sam Zaremba, Xiangyu Deng |
---|---|
Rok vydání: | 2009 |
Předmět: |
Sodium Hypochlorite
chemistry.chemical_element Biology Escherichia coli O157 medicine.disease_cause Applied Microbiology and Biotechnology Microbiology chemistry.chemical_compound Stress Physiological Drug Resistance Bacterial Gene expression Chlorine medicine Humans Hydrogen peroxide Gene Escherichia coli Regulator gene Ecology Gene Expression Profiling Gene Expression Regulation Bacterial Hydrogen Peroxide Anti-Bacterial Agents Oxidative Stress chemistry Sodium hypochlorite Food Microbiology Oxidative stress Food Science Biotechnology |
Zdroj: | Applied and Environmental Microbiology. 75:6110-6123 |
ISSN: | 1098-5336 0099-2240 |
DOI: | 10.1128/aem.00914-09 |
Popis: | Chlorinated water is commonly used in industrial operations to wash and sanitize fresh-cut, minimally processed produce. Here we compared 42 human outbreak strains that represented nine distinct Escherichia coli O157:H7 genetic lineages (or clades) for their relative resistance to chlorine treatment. A quantitative measurement of resistance was made by comparing the extension of the lag phase during growth of each strain under exposure to sublethal concentrations of sodium hypochlorite in Luria-Bertani or brain heart infusion broth. Strains in clade 8 showed significantly ( P < 0.05) higher resistance to chlorine than strains from other clades of E. coli O157:H7. To further explore how E. coli O157:H7 responds to oxidative stress at transcriptional levels, we analyzed the global gene expression profiles of two strains, TW14359 (clade 8; associated with the 2006 spinach outbreak) and Sakai (clade 1; associated with the 1996 radish sprout outbreak), under sodium hypochlorite or hydrogen peroxide treatment. We found over 380 genes were differentially expressed (more than twofold; P < 0.05) after exposure to low levels of chlorine or hydrogen peroxide. Significantly upregulated genes included several regulatory genes responsive to oxidative stress, genes encoding putative oxidoreductases, and genes associated with cysteine biosynthesis, iron-sulfur cluster assembly, and antibiotic resistance. Identification of E. coli O157:H7 strains with enhanced resistance to chlorine decontamination and analysis of their transcriptomic response to oxidative stress may improve our basic understanding of the survival strategy of this human enteric pathogen on fresh produce during minimal processing. |
Databáze: | OpenAIRE |
Externí odkaz: |