ALOJA-ML: A Framework for Automating Characterization and Knowledge Discovery in Hadoop Deployments

Autor: Daron Green, Aaron Call, David Carrera, Robert L. Reinauer, Josep Ll. Berral, Nicolas Poggi
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Jazyk: angličtina
Rok vydání: 2015
Předmět:
FOS: Computer and information sciences
Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC]
Data-center management
Computer science
C.4
Big data
Cloud computing
02 engineering and technology
Machine Learning (cs.LG)
Execution experiences
I.2.6
Software
Knowledge extraction
020204 information systems
Machine learning
Aprenentatge automàtic
0202 electrical engineering
electronic engineering
information engineering

Electronic data processing -- Distributed processing
business.industry
Performance tuning
Modeling and prediction
020206 networking & telecommunications
Benchmarking
Automation
Computer Science - Learning
Computer Science - Distributed
Parallel
and Cluster Computing

Hadoop
Software deployment
Benchmark (computing)
Distributed
Parallel
and Cluster Computing (cs.DC)

business
Software engineering
Processament distribuït de dades
Zdroj: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '15
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD 15
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
Universitat Jaume I
Popis: This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the approach, efficacy of the model and initial results. Hadoop presents a complex execution environment, where costs and performance depends on a large number of software (SW) configurations and on multiple hardware (HW) deployment choices. These results are accompanied by a test bed and tools to deploy and evaluate the cost-effectiveness of the different hardware configurations, parameter tunings, and Cloud services. Despite early success within ALOJA from expert-guided benchmarking, it became clear that a genuinely comprehensive study requires automation of modeling procedures to allow a systematic analysis of large and resource-constrained search spaces. ALOJA-ML provides such an automated system allowing knowledge discovery by modeling Hadoop executions from observed benchmarks across a broad set of configuration parameters. The resulting performance models can be used to forecast execution behavior of various workloads; they allow 'a-priori' prediction of the execution times for new configurations and HW choices and they offer a route to model-based anomaly detection. In addition, these models can guide the benchmarking exploration efficiently, by automatically prioritizing candidate future benchmark tests. Insights from ALOJA-ML's models can be used to reduce the operational time on clusters, speed-up the data acquisition and knowledge discovery process, and importantly, reduce running costs. In addition to learning from the methodology presented in this work, the community can benefit in general from ALOJA data-sets, framework, and derived insights to improve the design and deployment of Big Data applications.
Submitted to KDD'2015. Part of the Aloja Project. Partially funded by European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639595) - HiEST Project
Databáze: OpenAIRE