Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide

Autor: R F Struck, W J Suling, M W Trader, T H Corbett, D J Dykes
Rok vydání: 1983
Předmět:
Zdroj: British Journal of Cancer
ISSN: 1532-1827
0007-0920
DOI: 10.1038/bjc.1983.2
Popis: Isophosphoramide mustard was synthesized and was found to demonstrate activity essentially comparable to cyclophosphamide and ifosfamide against L1210 and P388 leukaemia. Lewis lung carcinoma, mammary adenocarcinoma 16/C, ovarian sarcoma M5076, and colon tumour 6A, in mice and Yoshida ascitic sarcoma in rats. At doses less than, or equivalent to, the LD10, isophosphoramide mustard retained high activity against cyclophosphamide-resistant L1210 and P388 leukaemias, but was less active against intracerebrally-implanted P388 leukaemia while cyclophosphamide produced a 4 log10 tumour cell reduction. It was also less active (one log10 lower cell kill) than cyclophosphamide against the B16 melonoma. Metabolism studies on ifosfamide in mice identified isophosphoramide mustard in blood. In addition, unchanged drug, carboxyifosfamide, 4-ketoifosfamide, dechloroethyl cyclophosphamide, dechloroethylifosfamide, and alcoifosfamide were identified. The latter 4 metabolites were also identified in urine from an ifosfamide-treated dog. In a simulated in vitro pharmacokinetic experiment against L1210 leukaemia in which drugs were incubated at various concentrations for various times, both 4-hydroxycyclophosphamide and isophosphoramide mustard exhibited significant cytoxicity at concentration times time values of 100-1000 micrograms X min ml-1, while acrolein was significantly cytotoxic at 10 micrograms X min ml-1. Treatment of mice with drug followed by L1210 cells demonstrated a shorter duration of effective levels of cytotoxic activity for isophosphoramide mustard and phosphoramide mustard in comparison with cyclophosphamide and ifosfamide. Isophosphoramide mustard and 2-chloroethylamine, a potential hydrolysis product of isophosphoramide mustard and carboxyifosfamide, were less mutagenic in the standard Ames test than the 2 corresponding metabolites of cyclophosphamide [phosphoramide mustard and bis(2-chloroethyl)amine].
Databáze: OpenAIRE