New Four Points Initialization for Digital Image Correlation in Metal-Sheet Strain Measurements
Autor: | Juan Prado-Olivares, Francisco J. Perez-Pinal, Oscar-Octavio Gutiérrez-Frías, Saúl Martínez-Díaz, Jose-Alfredo Padilla-Medina, Alejandro-Israel Barranco-Gutiérrez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Digital image correlation
business.product_category Similarity (geometry) Computer science Image registration Initialization Stereoscopy 02 engineering and technology 01 natural sciences lcsh:Technology law.invention 010309 optics lcsh:Chemistry DIC Software law 0103 physical sciences General Materials Science Computer vision strain measurement Instrumentation lcsh:QH301-705.5 Digital camera Fluid Flow and Transfer Processes business.industry lcsh:T Process Chemistry and Technology General Engineering Stamping 021001 nanoscience & nanotechnology lcsh:QC1-999 Computer Science Applications initial condition image registration lcsh:Biology (General) lcsh:QD1-999 lcsh:TA1-2040 Artificial intelligence 0210 nano-technology business lcsh:Engineering (General). Civil engineering (General) lcsh:Physics |
Zdroj: | Applied Sciences Volume 9 Issue 8 Applied Sciences, Vol 9, Iss 8, p 1691 (2019) |
ISSN: | 2076-3417 |
DOI: | 10.3390/app9081691 |
Popis: | Nowadays, the deformation measurement in metal sheets is important for industries such as the automotive and aerospace industries during its mechanical stamping processes. In this sense, Digital Image Correlation (DIC) has become the most relevant measurement technique in the field of experimental mechanics. This is mainly due to its versatility and low-cost compared with other techniques. However, traditionally, DIC global image registration implemented in software, such as MATLAB 2018, did not find the complete perspective transformation needed successfully and with high precision, because those algorithms use an image registration of the type &ldquo afine&rdquo or &ldquo similarity&rdquo based on a 2D information. Therefore, in this paper, a DIC initialization method is presented to estimate the surface deformation of metal sheets used in the bodywork automotive industry. The method starts with the 3D points reconstruction from a stereoscopic digital camera system. Due to the problem complexity, it is first proposed that the user indicates four points, belonging to reference marks of a &ldquo Circle grid&rdquo Following this, an automatic search is performed among the nearby marks, as far as one desires to reconstruct it. After this, the local DIC is used to verify that those are the correct marks. The results show reliability by reason of the high coincidence of marks in experimental cases. We also consider that the quality of mark stamping, lighting, and the initial conditions also contribute to trustworthy effects. |
Databáze: | OpenAIRE |
Externí odkaz: |