A review of algorithms for SAW sensors e-nose based volatile compound identification

Autor: Christine Mer-Calfati, Emmanuel Scorsone, Jean-Philippe Poli, Samuel Saada, Olivier Hotel
Přispěvatelé: Laboratoire d'analyse des données et d'intelligence des systèmes (LADIS), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Capteurs Diamant (LCD-LIST), French trans-governmental CBRN-E R&D program., Intelligence Artificielle et Apprentissage Automatique (LI3A), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Computer science
ELECTRONIC-NOSE
online learning
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Odour recognition
NEURAL NETWORK
02 engineering and technology
SAW sensors
01 natural sciences
Electronic nose
CLASSIFICATION
diamond
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
[CHIM.ANAL]Chemical Sciences/Analytical chemistry
Machine learning
trustworthy artificial intelligence
Materials Chemistry
medicine
PATTERN RECOGNITION
Electrical and Electronic Engineering
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
signal processing
Instrumentation
Nose
Data processing
NEURAL-NETWORK
Artificial neural network
INDEPENDENT COMPONENT ANALYSIS
010401 analytical chemistry
Metals and Alloys
artificial intelligence
021001 nanoscience & nanotechnology
Condensed Matter Physics
0104 chemical sciences
Surfaces
Coatings and Films

Electronic
Optical and Magnetic Materials

Support vector machine
Identification (information)
SUPPORT VECTOR MACHINES
medicine.anatomical_structure
Pattern recognition (psychology)
PATTERN-RECOGNITION
fuzzy logic
0210 nano-technology
Algorithm
Zdroj: Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical, Elsevier, 2018, 255 (3), pp.2472-2482. ⟨10.1016/j.snb.2017.09.040⟩
Sensors and Actuators B: Chemical, 2018, 255, Part 3, pp.2472-2482. ⟨10.1016/j.snb.2017.09.040⟩
ISSN: 0925-4005
Popis: International audience; Recent advances in odour sensors have led to the development of new applications; among them, electronic noses have gained major interest and found successful applications in many fields. An electronic nose is a device composed of an array of odour sensors with sensitivity to a wide range of chemical compounds. Reliable electronic nose systems rely on advanced data processing techniques. Among them, machine learning has become a core technique for electronic nose design. In this document, we describe several machine learning algorithms and compare their performances on different features used in state of the art electronic nose systems.
Databáze: OpenAIRE