An application of TQFT to modular representation theory

Autor: Gregor Masbaum, Patrick M. Gilmer
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Mathématiques de Jussieu - Paris Rive Gauche ( IMJ-PRG ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Zdroj: Invent.Math.
Invent.Math., 2017, 210, pp.501. ⟨10.1007/s00222-017-0734-4⟩
Inventiones Mathematicae
Invent.Math., 2017, 210, pp.501. 〈10.1007/s00222-017-0734-4〉
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-017-0734-4
Popis: For p>3 a prime, and g>2 an integer, we use Topological Quantum Field Theory (TQFT) to study a family of p-1 highest weight modules L_p(lambda) for the symplectic group Sp(2g,K) where K is an algebraically closed field of characteristic p. This permits explicit formulae for the dimension and the formal character of L_p(lambda) for these highest weights.
24 pages, 3 figures. v2: Lemma 3.1 and Appendix A added
Databáze: OpenAIRE