An application of TQFT to modular representation theory
Autor: | Gregor Masbaum, Patrick M. Gilmer |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Mathématiques de Jussieu - Paris Rive Gauche ( IMJ-PRG ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2017 |
Předmět: |
Modular representation theory
Explicit formulae General Mathematics [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Dimension (graph theory) algebra field theory 01 natural sciences Prime (order theory) Combinatorics Mathematics - Geometric Topology Integer Mathematics - Quantum Algebra group: symplectic 0103 physical sciences FOS: Mathematics Quantum Algebra (math.QA) modular Representation Theory (math.RT) 0101 mathematics Algebraically closed field Mathematics Symplectic group Topological quantum field theory 010102 general mathematics Geometric Topology (math.GT) 16. Peace & justice field theory: topological [ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] 010307 mathematical physics Mathematics - Representation Theory |
Zdroj: | Invent.Math. Invent.Math., 2017, 210, pp.501. ⟨10.1007/s00222-017-0734-4⟩ Inventiones Mathematicae Invent.Math., 2017, 210, pp.501. 〈10.1007/s00222-017-0734-4〉 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-017-0734-4 |
Popis: | For p>3 a prime, and g>2 an integer, we use Topological Quantum Field Theory (TQFT) to study a family of p-1 highest weight modules L_p(lambda) for the symplectic group Sp(2g,K) where K is an algebraically closed field of characteristic p. This permits explicit formulae for the dimension and the formal character of L_p(lambda) for these highest weights. 24 pages, 3 figures. v2: Lemma 3.1 and Appendix A added |
Databáze: | OpenAIRE |
Externí odkaz: |