Mechanism of Nucleoside Triphosphate Diphosphohydrolase-1-Associated Imbalance in Adenosine Diphosphate Degradation, B-Cell Activation, and Related Injury During Acute Antibody-Mediated Rejection

Autor: Wei Huang, Zhigang Li, Yonghong Zhang, Daxue Tian, G. Wei, Xinlu Wang
Rok vydání: 2017
Předmět:
Zdroj: Transplantation proceedings. 50(5)
ISSN: 1873-2623
Popis: Objective The objective of this study was to investigate the effect of nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) during acute antibody-mediated rejection (AMR). Methods NTPDase1 overexpression, NTPDase1 knockout, and wild-type nude mice skin graft models were used to induce acute AMR. NTPDase1 expression in B cells, NTPDase1 messenger RNA expression in skin grafts, extracellular adenosine diphosphate (ADP) concentration, B-cell volume and surface antigens expression, average platelet transport rate, and ultrastructure and apoptosis of skin graft cells were investigated. Results During acute AMR in nude mice, higher NTPDase1 expression caused lower extracellular ADP concentration, smaller increase in B-cell volume, and major histocompatibility complex II surface antigen expression, suggesting a negative correlation between them; higher NTPDase1 expression also caused slower average platelet transport rate and less severe skin graft injury, suggesting a negative correlation between them. Pretreatment with high-dose exogenous NTPDase1 inhibited platelet activation and protected skin grafts, but it resulted in prolonged bleeding time (by 51.4%) and prolonged coagulation time (by 44.1%). Conclusion An NTPDase1-associated imbalance in extracellular ADP degradation may contribute to B-cell activation, platelet activation, and more severe skin graft injury in nude mice. Pretreatment with high-dose exogenous NTPDase1 effectively protected skin grafts in nude mice at 1 week, but it increased the risk of bleeding.
Databáze: OpenAIRE