WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment

Autor: Bernhard Ujvari, Anton Arnold, Christian Klein
Přispěvatelé: Institut für Analysis und Scientific Computing, Vienna University of Technology (TU Wien), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Austrian Science Fund (FWF)bi-national FWFI3538-N32Clear Sky VenturesFrench National Research Agency (ANR)isite BFC project NAANoDANR-17-EURE-0002 EIPHIEuropean Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie RISE 2017 Grant778010, ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: BIT Numerical Mathematics
BIT Numerical Mathematics, Springer Verlag, 2021, ⟨10.1007/s10543-021-00868-x⟩
ISSN: 0006-3835
1572-9125
DOI: 10.1007/s10543-021-00868-x⟩
Popis: International audience; This paper is concerned with the efficient numerical computation of solutions to the 1D stationary Schrödinger equation in the semiclassical limit in the highly oscillatory regime. A previous approach to this problem based on explicitly incorporating the leading terms of the WKB approximation is enhanced in two ways: first a refined error analysis for the method is presented for a not explicitly known WKB phase, and secondly the phase and its derivatives will be computed with spectral methods. The efficiency of the approach is illustrated for several examples.
Databáze: OpenAIRE