Time-Harmonic Acoustic Scattering in a Complex Flow: a Full Coupling Between Acoustics and Hydrodynamics

Autor: E. Peynaud, Jean-François Mercier, Sébastien Pernet, Florence Millot, A. S. Bonnet-Ben Dhia
Přispěvatelé: Propagation des Ondes : Étude Mathématique et Simulation (POEMS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), CERFACS [Toulouse], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Communications in Computational Physics
Communications in Computational Physics, 2012, 11 (2), pp.555-572. ⟨10.4208/cicp.221209.030111s⟩
Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.555-572. ⟨10.4208/cicp.221209.030111s⟩
ISSN: 1815-2406
Popis: For the numerical simulation of time harmonic acoustic scattering in a complex geometry, in presence of an arbitrary mean flow, the main difficulty is the coexistence and the coupling of two very different phenomena: acoustic propagation and convection of vortices. We consider a linearized formulation coupling an augmented Galbrun equation (for the perturbation of displacement) with a time harmonic convection equation (for the vortices). We first establish the well-posedness of this time harmonic convection equation in the appropriate mathematical framework. Then the complete problem, with Perfectly Matched Layers at the artificial boundaries, is proved to be coercive + compact, and a hybrid numerical method for the solution is proposed, coupling finite elements for the Galbrun equation and a Discontinuous Galerkin scheme for the convection equation. Finally a 2D numerical result shows the efficiency of the method.
Databáze: OpenAIRE