Time-Harmonic Acoustic Scattering in a Complex Flow: a Full Coupling Between Acoustics and Hydrodynamics
Autor: | E. Peynaud, Jean-François Mercier, Sébastien Pernet, Florence Millot, A. S. Bonnet-Ben Dhia |
---|---|
Přispěvatelé: | Propagation des Ondes : Étude Mathématique et Simulation (POEMS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), CERFACS [Toulouse], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Physics
Convection [PHYS]Physics [physics] Physics and Astronomy (miscellaneous) Computer simulation Numerical analysis Mathematical analysis 010103 numerical & computational mathematics 01 natural sciences Finite element method 010101 applied mathematics Physics::Fluid Dynamics Complex geometry Classical mechanics Discontinuous Galerkin method Aeroacoustics 0101 mathematics Convection–diffusion equation |
Zdroj: | Communications in Computational Physics Communications in Computational Physics, 2012, 11 (2), pp.555-572. ⟨10.4208/cicp.221209.030111s⟩ Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.555-572. ⟨10.4208/cicp.221209.030111s⟩ |
ISSN: | 1815-2406 |
Popis: | For the numerical simulation of time harmonic acoustic scattering in a complex geometry, in presence of an arbitrary mean flow, the main difficulty is the coexistence and the coupling of two very different phenomena: acoustic propagation and convection of vortices. We consider a linearized formulation coupling an augmented Galbrun equation (for the perturbation of displacement) with a time harmonic convection equation (for the vortices). We first establish the well-posedness of this time harmonic convection equation in the appropriate mathematical framework. Then the complete problem, with Perfectly Matched Layers at the artificial boundaries, is proved to be coercive + compact, and a hybrid numerical method for the solution is proposed, coupling finite elements for the Galbrun equation and a Discontinuous Galerkin scheme for the convection equation. Finally a 2D numerical result shows the efficiency of the method. |
Databáze: | OpenAIRE |
Externí odkaz: |