Activity‐dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons
Autor: | Robert E.W. Fyffe, Adam S. Deardorff, Shannon H. Romer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Central Nervous System Physiology Motor nerve Action Potentials Glutamic Acid Stimulation Ion Channels Rats Sprague-Dawley 03 medical and health sciences Cellular and Molecular Neuroscience 0302 clinical medicine Shab Potassium Channels Physiology (medical) Homeostatic plasticity Membrane Physiology Premovement neuronal activity Animals Homeostasis α‐motoneuron Ion channel Original Research Motor Neurons Chemistry Kv2.1 voltage‐gated ion channels activity dependent Glutamate receptor Anatomy C‐boutons Rats Electrophysiology 030104 developmental biology Spinal Nerves Peripheral nerve injury Female Neuroscience Ion Channel Gating 030217 neurology & neurosurgery Motor Control |
Zdroj: | Physiological Reports |
ISSN: | 2051-817X |
Popis: | Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1–15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity. |
Databáze: | OpenAIRE |
Externí odkaz: |