Methodology for studying the composition of non-interlamellar pore water in compacted bentonite
Autor: | Joonas Järvinen, Aku Itälä, Michal Matusewicz |
---|---|
Rok vydání: | 2016 |
Předmět: |
Materials science
010504 meteorology & atmospheric sciences bentonite Diffusion microstructure ta1171 squeezing Mixing (process engineering) pore water Mineralogy 010502 geochemistry & geophysics 01 natural sciences Chloride Colloid Pore water pressure Chemical engineering Geochemistry and Petrology Bentonite medicine Clay minerals Dissolution 0105 earth and related environmental sciences medicine.drug |
Zdroj: | Järvinen, J, Matusewicz, M & Itälä, A 2016, ' Methodology for studying the composition of non-interlamellar pore water in compacted bentonite ', Clay Minerals, vol. 51, no. 2, pp. 173-187 . https://doi.org/10.1180/claymin.2016.051.2.05 |
ISSN: | 1471-8030 0009-8558 |
Popis: | Many safety functions required of the compacted bentonite buffer in the KBS-3 concept rely on processes influenced by the composition of the pore water. Important safety-relevant processes are related to the bentonite buffer,e.g.swelling, precipitation and dissolution reactions, and transport of water, colloids and ions. One of the methods used in analysing pore water in compacted bentonite is the ‘squeezing technique’. Various possible artefacts which can occur during squeezing, such as mixing of different pore-water types, dissolution of accessory minerals and cation exchange, need special attention.The present work describes the methodology for studying the composition of the non-interlamellar pore water by combining squeezing methods, chemical analyses, microstructure measurements and geochemical modelling. Four different maximum pressures were used to squeeze the compacted bentonite pore water. The origin of the pore water was studied by analysing the bentonite microstructure both before and after squeezing using SAXS and NMR, the cation exchange and dissolution reactions were studied by chemical analyses and geochemical modelling.The pore-water yield increased from 32 to 48 wt.% from the initial amount of porewater in the samples when the maximum squeezing pressure was increased from 60 MPa to 120 MPa. About 35 wt.% of the water collected originated from the interlamellar (IL) pores. The ratio between IL and non-IL pore waters as well as the composition of the squeezed porewater was constant in the squeezing-pressure range used. The results of microstructural measurements by SAXS were in perfect agreement with previous studies (e.g.Muurinen & Carlsson, 2013). The dissolving accessory minerals have an effect on the ratio of the cations in the squeezed solution while the migration of anions in bentonite seems to be diffusion limited. According to geochemical modelling the chloride concentration of the non-IL pore water in compacted bentonite before squeezing was 0.34 Mgreater than in the squeezed pore water due to the mixing of two main water types. |
Databáze: | OpenAIRE |
Externí odkaz: |