On Infinite Order Simple Current Extensions of Vertex Operator Algebras
Autor: | Jean Auger, Matthew Rupert |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Vertex (graph theory)
Pure mathematics Direct sum 010102 general mathematics Mathematics - Category Theory 01 natural sciences Braided monoidal category Vertex operator algebra Operator algebra Mathematics::Quantum Algebra Mathematics::Category Theory 0103 physical sciences Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Category Theory (math.CT) 010307 mathematical physics Representation Theory (math.RT) 0101 mathematics Categorical variable Mathematics - Representation Theory Mathematics |
Popis: | We construct a direct sum completion $\mathcal{C}_{\oplus}$ of a given braided monoidal category $\mathcal{C}$ which allows for the rigorous treatment of infinite order simple current extensions of vertex operator algebras as seen in \cite{CKL}. As an example, we construct the vertex operator algebra $V_L$ associated to an even lattice $L$ as an infinite order simple current extension of the Heisenberg VOA and recover the structure of its module category through categorical considerations. 26 pages |
Databáze: | OpenAIRE |
Externí odkaz: |