Popis: |
The influence of the geometric modification (GM) of fumed nanoscale silica A300 (NS) on the adsorption capacity of human serum albumin (HSA) as well as the physicochemical and textural properties of the protein/nanosilica system was analyzed. An effective medical enterosorbent based on fumed nanosilica was designed and produced in the Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine. To design an effective nanomaterial for biomedical applications as a wound-healing material, the adsorption, physicochemical and surface properties of the initial nanosilica (NS), nanosilica after geometric modification (GM-nanosilica), and HSA/nanosilica biocomposites were characterized. The differences in sorption capacities, acid-base, textural, and surface properties of the obtained materials were monitored using the diffuse UV-vis reflectance spectroscopy, the potentiometric titration of suspension, the nitrogen adsorption/desorption isotherms, the scanning electron microscopy with the energy dispersive X-ray microanalysis and the digital optical microscope. For a deeper understanding of the nature of immobilized HSA molecules on the nanosilica and GM-nanosilica, the surface functional groups were characterized by the FTIR spectroscopy. It was found that the adsorption properties, physicochemical and textural characteristics of fumed nanoscale silica depend on the mechanical treatment time (t |