Conditional upper bound for the k-th prime ideal with given Artin symbol
Autor: | Loïc André Henri Grenie, Giuseppe Molteni |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Values of arithmetic functions
Algebra and Number Theory Mathematics - Number Theory Mathematics::General Mathematics Artin L-functions Explicit bounds Prime ideal Mathematics::Number Theory 010102 general mathematics 010103 numerical & computational mathematics 01 natural sciences Upper and lower bounds Combinatorics Settore MAT/02 - Algebra Riemann hypothesis symbols.namesake Settore MAT/05 - Analisi Matematica symbols Dedekind cut 0101 mathematics Symbol (formal) Mathematics |
Popis: | We prove an explicit upper bound for the k-th prime ideal with fixed Artin symbol, under the assumption of the validity of the Riemann hypothesis for the Dedekind zeta functions. Comment: We have improved the introduction and made clearer some computations. arXiv admin note: text overlap with arXiv:1709.07609 |
Databáze: | OpenAIRE |
Externí odkaz: |