On the Degeneracy of Random Expressions Specified by Systems of Combinatorial Equations

Autor: Pablo Rotondo, Cyril Nicaud, Florent Koechlin
Přispěvatelé: Laboratoire d'Informatique Gaspard-Monge (LIGM), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), The third author was funded by the Projet RIN Alenor (Regional Project from French Normandy), Nataša Jonoska, Dmytro Savchuk
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Lecture Notes in Computer Science
International Conference on Developments in Language Theory (DLT 2020)
International Conference on Developments in Language Theory (DLT 2020), May 2020, Tampa, United States. pp.164-177, ⟨10.1007/978-3-030-48516-0_13⟩
Developments in Language Theory ISBN: 9783030485153
DLT
Developments in Language Theory
DOI: 10.1007/978-3-030-48516-0_13⟩
Popis: International audience; We consider general expressions, which are trees whose nodes are labeled with operators, that represent syntactic descriptions of formulas. We assume that there is an operator that has an absorbing pattern and prove that if we use this property to simplify a uniform random expression with n nodes, then the expected size of the result is bounded by a constant. In our framework, expressions are defined using a combinatorial system, which describes how they are built: one can ensure, for instance, that there are no two consecutive stars in regular expressions. This generalizes a former result where only one equation was allowed, confirming the lack of expressivity of uniform random expressions.
Databáze: OpenAIRE