Compatibility of t-structures for quantum symplectic resolutions
Autor: | Thomas Nevins, Kevin McGerty |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
16G99 General Mathematics 53D20 17B63 01 natural sciences localization Mathematics - Algebraic Geometry Mathematics::K-Theory and Homology Mathematics::Category Theory Mathematics - Quantum Algebra 0103 physical sciences FOS: Mathematics Quantum Algebra (math.QA) Representation Theory (math.RT) 0101 mathematics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Quantum Mathematics Functor Kirwan–Ness stratification 010102 general mathematics $D$-modules microlocalization Reductive group 53D55 quantum Hamiltonian reduction 16S38 Compatibility (mechanics) 010307 mathematical physics Affine transformation Mathematics - Representation Theory $t$-exactness Symplectic geometry |
Zdroj: | Duke Math. J. 165, no. 13 (2016), 2529-2585 |
ISSN: | 0012-7094 |
DOI: | 10.1215/00127094-3619684 |
Popis: | Let W be a smooth complex quasiprojective variety with the action of a connected reductive group G. Adapting the stratification approach of Teleman to a microlocal context, we prove a vanishing theorem for the functor of G-invariant sections---i.e., of quantum Hamiltonian reduction---for G-equivariant twisted D-modules on W. As a consequence, when W is affine we establish an effective combinatorial criterion for exactness of the global sections functors of microlocalization theory. When combined with our earlier derived equivalence results, this gives precise criteria for "microlocalization of representation categories." Comment: version 2: minor corrections |
Databáze: | OpenAIRE |
Externí odkaz: |