Triangular sequences, combinatorial recurrences and linear difference equations
Autor: | María José Jiménez Jiménez, Andrés M. Encinas |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. MAPTHE - Anàlisi matricial i Teoria Discreta del Potencial |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Numerical Analysis
Algebra and Number Theory Combinatorial analysis Linear difference equations Orthogonal polynomials Combinatorial identities 39 Difference and functional equations::39A Difference equations [Classificació AMS] Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC] Expression (computer science) Triangular matrices Enumerative combinatorics Classical orthogonal polynomials Combinatorics Simple (abstract algebra) Discrete Mathematics and Combinatorics Order (group theory) 05 Combinatorics::05A Enumerative combinatorics [Classificació AMS] Three-term recurrences Geometry and Topology 11 Number theory::11B Sequences and sets [Classificació AMS] Mathematics Anàlisi combinatòria |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | In this work we introduce the triangular double sequences of arbitrary order given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular sequences generated by two double sequences and establish their relation with the solution of linear three-term recurrences. We show through some simple examples how these triangular sequences appear as essential components in the expression of some classical orthogonal polynomials and combinatorial numbers. |
Databáze: | OpenAIRE |
Externí odkaz: |