State estimation of an octorotor with unknown inputs. Application to radar imaging

Autor: Thomas Chevet, Cristina Stoica Maniu, Maria Makarov, Pierre Tarascon, Israel Hinostroza
Přispěvatelé: Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Sondra, CentraleSupélec, Université Paris-Saclay (COmUE) (SONDRA), ONERA-CentraleSupélec-Université Paris Saclay (COmUE)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: 21st International Conference on System Theory, Control and Computing
21st International Conference on System Theory, Control and Computing, Oct 2017, Sinaia, Romania. pp.723-728, ⟨10.1109/ICSTCC.2017.8107122⟩
DOI: 10.1109/ICSTCC.2017.8107122⟩
Popis: International audience; This paper focuses on the design of a linear Kalman filter and an extended Kalman filter for the estimation of an octorotor unmanned aerial vehicle's (UAV) state in the context of Synthetic Aperture Radar image reconstruction. A comparison to a linear interpolation method is also proposed. The Kalman filters are developed based on a complete nonlinear model of the UAV and its linearized form. A particularity of the considered platform is that the control signals are not measured and have to be estimated as well as the UAV's state. The proposed techniques are then tested on a UAV simulator and a radar imaging simulator.
Databáze: OpenAIRE