Percolation Games

Autor: Garnier Guillaume, Bruno Ziliotto
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)
Rok vydání: 2022
Předmět:
Zdroj: HAL
ISSN: 1526-5471
0364-765X
DOI: 10.1287/moor.2022.1334
Popis: This paper introduces a discrete-time stochastic game class on [Formula: see text], which plays the role of a toy model for the well-known problem of stochastic homogenization of Hamilton–Jacobi equations. Conditions are provided under which the n-stage game value converges as n tends to infinity, and connections with homogenization theory are discussed. Funding: The second author acknowledges the support of the French Agence Nationale de la Recherche (ANR) [Grant ANR-21-CE40-0020] (CONVERGENCE project).
Databáze: OpenAIRE