Complete Electrochemical Characterization and Limiting Current of Polyacetal Electrolytes
Autor: | Youngwoo Choo, Rachel L. Snyder, Neel J. Shah, Brooks A. Abel, Geoffrey W. Coates, Nitash P. Balsara |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Energy
Renewable Energy Sustainability and the Environment Materials Chemistry Electrochemistry Materials Engineering 0303 Macromolecular and Materials Chemistry 0306 Physical Chemistry (incl. Structural) 0912 Materials Engineering Condensed Matter Physics Surfaces Coatings and Films Electronic Optical and Magnetic Materials Macromolecular and Materials Chemistry Physical Chemistry (incl. Structural) |
Zdroj: | Journal of The Electrochemical Society, vol 169, iss 2 |
Popis: | We investigate a polyacetal-based electrolyte, poly(1,3,6-trioxocane) (P(2EO-MO)) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and report full electrochemical characterization of the transport parameters and a thermodynamic property in comparison to the previously reported poly(ethylene oxide) (PEO) electrolyte data [D. Gribble et al., J. Electrochem. Soc., 166, A3228 (2019)]. While the steady-state current fraction (ρ +) of P(2EO-MO) electrolyte is greater than that of PEO electrolyte in the entire salt concentration window we explored, the rigorously defined transference number using Newman’s concentrated solution theory ( t + 0 ) appears to be similar to that of PEO electrolyte. On the basis of full electrochemical characterization, we calculate the salt concentration profile as a function of position in the cell and predict limiting current density (i L L) as a function of salt concentration. Experimental data were compared to the predicted values. The non-monotonic behaviors were observed both in prediction and experimental results with offset peak positions. We find that the limiting current density of P(2EO-MO) electrolyte is systematically lower than that of PEO electrolyte in most of the salt concentrations with the exception of r av = 0.05. It is noteworthy that even though one measure of electrolyte efficacy (κρ +) is superior in P(2EO-MO) electrolyte, the limiting current density, which is another metric of electrolyte efficacy at high currents, is not greater in P(2EO-MO). |
Databáze: | OpenAIRE |
Externí odkaz: |