Scaling in Concurrent Evolutionary Algorithms

Autor: José-Mario García-Valdez, Juan J. Merelo, Juan Luis Jiménez Laredo, Pedro A. Castillo, Sergio Rojas-Galeano
Přispěvatelé: Departamento de Arquitectura y tecnología de computadores, Universidad de Granada (UGR), Equipe Réseaux d'interactions et Intelligence Collective (RI2C - LITIS), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Tijuana Institute of Technology, District University of Bogotá
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Applied Computer Sciences in Engineering-6th Workshop on Engineering Applications, WEA 2019
Applied Computer Sciences in Engineering-6th Workshop on Engineering Applications, WEA 2019, Oct 2019, Santa Marta, Colombia
Communications in Computer and Information Science ISBN: 9783030310189
WEA
Popis: The concept of channel, a computational mechanism used to convey state to different threads of process execution, is at the core of the design of multi-threaded concurrent algorithms. In the case of concurrent evolutionary algorithms, channels can be used to communicate messages between several threads performing different evolution tasks related to genetic operations or mixing of populations. In this paper we study to what extent the design of these messages in a communicating sequential process context may influence scaling and performance of concurrent evolutionary algorithms. For this aim, we designed a channel-based concurrent evolutionary algorithm that is able to effectively solve different benchmark binary problems (e.g. OneMax, LeadingOnes, RoyalRoad), showing that it provides a good basis to leverage the multi-threaded and multi-core capabilities of modern computers. Although our results indicate that concurrency is advantageous to scale-up the performance of evolutionary algorithms, they also highlight how the trade–off between concurrency, communication and evolutionary parameters affect the outcome of the evolved solutions, opening-up new opportunities for algorithm design.
Databáze: OpenAIRE