CLASSIFICATION OF SUBALGEBRAS OF THE CAYLEY ALGEBRA OVER A FINITE FIELD
Autor: | Alexander Grishkov, Andrei V. Zavarnitsine, Maria De Lourdes Merlini Giuliani |
---|---|
Rok vydání: | 2010 |
Předmět: |
Automorphism group
Algebra and Number Theory Mathematics::Operator Algebras Applied Mathematics Unital Mathematics::Rings and Algebras Subalgebra Structure (category theory) Type (model theory) Algebra Finite field Mathematics::Quantum Algebra Algebra over a field Moufang loop ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS Mathematics::Representation Theory Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 1793-6829 0219-4988 |
DOI: | 10.1142/s0219498810004233 |
Popis: | We classify all unital subalgebras of the Cayley algebra 𝕆(q) over the finite field Fq, q = pn. We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of 𝕆(q). We also determine the structure of the Moufang loops associated with each subalgebra of 𝕆(q). |
Databáze: | OpenAIRE |
Externí odkaz: |