Relevance as an enhancer of votes on Twitter

Autor: Fernando Llopis, Jorge Arroba Rimassa, Rafael Muñoz Guillena
Přispěvatelé: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
DOI: 10.4995/carma2018.2018.8311
Popis: [EN] The concept of the influence of Katz and Lazarfeld given in the last century has evolved thanks to the appearance of Social Networks and especially Twitter. Because this microblogging has allowed candidates for any election process to be closer to their electors and also allows an analysis of the contents of the messages to determine their polarity. The relevance of the messages that measure the level of influence that can be had in the voters, incorporated into the traditional analysis of the Social Networks allow to have a greater degree of precision in the electoral predictions that are made using natural language processing, NLP. We have introduced in the methodology that we propose a mechanism to enhance the votes of those messages that have a greater relevance and turn them into votes in order to improve the predictability of the electoral results. The proposed methodology was applied in the election for President of the Republic of Ecuador that was held on February 19, 2017, obtaining a Mean Average Error, MAE = 1.4 that demonstrates the relevance of incorporating the variable Relevance as an enhancer of votes.
This research work has been partially funded by the University of Alicante, Generalitat Valenciana , Spanish Government, Ministerio de Educación, Cultura y Deporte and ASAP - Ayudas Fundación BBVA a equipos de investigación científica 2016(FUNDACIONBBVA2-16PREMIO) through the projects, TIN2015- 65100-R, TIN2015-65136-C2-2-R, PROMETEOII/2014/001, GRE16- 01: “Plataforma inteligente para recuperación, análisis y representación de la información generada por usuarios en Internet” and “Análisis de Sentimientos Aplicado a la Prevención del Suicidio en las Redes Sociales” (PR16_SOC_0013).
Databáze: OpenAIRE