Ordering of quantum dot molecules by self-organization
Autor: | R Richard Nötzel, T Twan van Lippen, JH Joachim Wolter |
---|---|
Přispěvatelé: | Photonics and Semiconductor Nanophysics |
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Journal of Vacuum Science and Technology, B, 23(4), 1693-1699. AVS Science and Technology Society |
ISSN: | 0734-211X 1071-1023 |
DOI: | 10.1116/1.1942510 |
Popis: | Ordered groups of InAs quantum dots (QDs), lateral QD molecules, are created by self-organized anisotropic strain engineering of a (In,Ga)As/GaAs superlattice (SL) template on GaAs (311)B by molecular beam epitaxy. During stacking the SL template self-organizes into a highly ordered two-dimensional (In,Ga)As and, thus, strain field modulation on a mesoscopic length scale, constituting a Turing pattern in solid state. InAs QDs preferentially grow on top of the SL template nodes due to local strain recognition, forming a lattice of separated groups of closely spaced ordered QDs. The SL template and InAs QD growth conditions like the number of SL periods, growth temperatures, amount and composition of deposited (In,Ga)As, and insertion of Al-containing layers are studied in detail for optimized QD ordering within and among the InAs QD molecules on the SL template nodes, which is evaluated by atomic force microscopy. The average number of InAs QDs within the molecules is controlled by the thickness of the upp... |
Databáze: | OpenAIRE |
Externí odkaz: |