Momentum transport in the free fluid-porous medium transition layer: the one-domain approach
Autor: | Benoit Goyeau, Philippe Angot, Roel Hernandez-Rodriguez, J. Alberto Ochoa-Tapia |
---|---|
Přispěvatelé: | Universidad Autonoma Metropolitana - Iztapalapa, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université - Faculté des Sciences (AMU SCI), Aix Marseille Université (AMU), Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
One-domain approach
Work (thermodynamics) Local closure problem General Chemical Engineering Context (language use) 010103 numerical & computational mathematics 01 natural sciences Industrial and Manufacturing Engineering 010305 fluids & plasmas Momentum [CHIM.GENI]Chemical Sciences/Chemical engineering 0103 physical sciences Momentum transport Tensor [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 0101 mathematics Physics Applied Mathematics Free flow/porous medium inter-region General Chemistry Mechanics [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Permeability (earth sciences) Compressibility Closure problem Porous medium |
Zdroj: | Chemical Engineering Science Chemical Engineering Science, Elsevier, 2022, 248 (Part A), pp.117111. ⟨10.1016/j.ces.2021.117111⟩ Chemical Engineering Science, 2022, 248 (Part A), pp.117111. ⟨10.1016/j.ces.2021.117111⟩ |
ISSN: | 0009-2509 |
DOI: | 10.1016/j.ces.2021.117111⟩ |
Popis: | International audience; In this work, we consider the momentum transport of a incompressible fluid in a like Beavers and Joseph (1967) system. For this purpose, in the context of the volume averaging method, we use a one-domain approach (ODA). Thus, the momentum generalized transport equations (GTE), which are written in terms of position-dependent effective medium coefficients, are valid everywhere in the system and contains two Brinkman corrections in addition to a Darcy’s term. The ODA predictions are tested against the results obtained from averaging the local profiles resulting from pore-scale simulations. One of the key points for solving the ODA remains on the prediction of the permeability, which in this work is obtained either by solving the associated local closure problem or from pore-scale profiles. Our analysis shows that the GTE for momentum transport accurately predicts the average velocity profiles everywhere in the system. To this end, the first and the second Brinkman’s corrections, as well as a position-dependent intrinsic permeability tensor in Darcy’s term must be included. |
Databáze: | OpenAIRE |
Externí odkaz: |