The distribution of Gaussian multiplicative chaos on the unit interval
Autor: | Tunan Zhu, Guillaume Remy |
---|---|
Přispěvatelé: | Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Pure mathematics 60G70 chaos [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Log-correlated field Holomorphic function FOS: Physical sciences Field (mathematics) conformal field theory holomorphic integrability 01 natural sciences Measure (mathematics) Gaussian multiplicative chaos 010104 statistics & probability FOS: Mathematics 0101 mathematics Mathematical Physics Mathematics 60G60 Liouville quantum gravity field theory: conformal Conformal field theory integrable probability Probability (math.PR) 010102 general mathematics Multiplicative function Mathematical Physics (math-ph) Auxiliary function field theory: Liouville Distribution (mathematics) quantum gravity 60G15 fractional 60G57 82B23 Statistics Probability and Uncertainty Mathematics - Probability reflection Unit interval |
Zdroj: | Annals Probab. Annals Probab., 2020, 48 (2), pp.872-915. ⟨10.1214/19-AOP1377⟩ Ann. Probab. 48, no. 2 (2020), 872-915 |
ISSN: | 0091-1798 |
DOI: | 10.1214/19-aop1377 |
Popis: | We consider a sub-critical Gaussian multiplicative chaos (GMC) measure defined on the unit interval [0,1] and prove an exact formula for the fractional moments of the total mass of this measure. Our formula includes the case where log-singularities (also called insertion points) are added in 0 and 1, the most general case predicted by the Selberg integral. The idea to perform this computation is to introduce certain auxiliary functions resembling holomorphic observables of conformal field theory that will be solutions of hypergeometric equations. Solving these equations then provides non-trivial relations that completely determine the moments we wish to compute. We also include a detailed discussion of the so-called reflection coefficients appearing in tail expansions of GMC measures and in Liouville theory. Our theorem provides an exact value for one of these coefficients. Lastly we mention some additional applications to small deviations for GMC measures, to the behavior of the maximum of the log-correlated field on the interval and to random hermitian matrices. Comment: 54 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |