Deduciendo el teorema de las tres brechas vía inducción Rauzy-Veech
Autor: | Christian Weiss |
---|---|
Rok vydání: | 2020 |
Předmět: |
uniform distribution
inducción Rauzy-Veech Pure mathematics Mathematics - Number Theory Teorema de las tres brechas General Mathematics Rauzy-Veech induction Dynamical Systems (math.DS) Kronecker sequence Three Gap Theorem intercambio de intervalos sucesión de Kronecker FOS: Mathematics distribución uniforme Number Theory (math.NT) Gap theorem Mathematics - Dynamical Systems interval exchange transformation Mathematics |
Zdroj: | Revista Colombiana de Matemáticas, Volume: 54, Issue: 1, Pages: 31-37, Published: JUN 2020 |
ISSN: | 2357-4100 0034-7426 |
DOI: | 10.15446/recolma.v54n1.89777 |
Popis: | The Three Gap Theorem states that there are at most three distinct lengths of gaps if one places $n$ points on a circle, at angles of $z, 2z, 3z, \ldots nz$ from the starting point. The theorem was first proven in 1958 by S\'os and many proofs have been found since then. In this note we show how the Three Gap Theorem can easily be deduced by using Rauzy-Veech induction. Comment: 5 pages |
Databáze: | OpenAIRE |
Externí odkaz: |