Fogging Control on LDPE/EVA Coextruded Films: Wettability Behavior and Its Correlation with Electric Performance
Autor: | Pedro E. Ramírez-González, Juan C. Pérez-Medina, Zoe V. Quiñones-Jurado, Miguel A. Waldo-Mendoza, Bernardo Yañez-Soto |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Materials science
genetic structures low-density polyethylene wettability Filtration and Separation 02 engineering and technology Conductivity 010402 general chemistry lcsh:Chemical technology 01 natural sciences Article Contact angle chemistry.chemical_compound AC electrical conductivity Polymer chemistry Chemical Engineering (miscellaneous) lcsh:TP1-1185 Composite material Fourier transform infrared spectroscopy lcsh:Chemical engineering nonionic surfactants ethylenevinyl acetate coextruded films Process Chemistry and Technology lcsh:TP155-156 Polyethylene 021001 nanoscience & nanotechnology Surface energy 0104 chemical sciences Polyolefin Low-density polyethylene chemistry Wetting 0210 nano-technology |
Zdroj: | Membranes; Volume 7; Issue 1; Pages: 11 Membranes Membranes, Vol 7, Iss 1, p 11 (2017) |
ISSN: | 2077-0375 |
DOI: | 10.3390/membranes7010011 |
Popis: | The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found. |
Databáze: | OpenAIRE |
Externí odkaz: |