Properties of nuclear pastas
Autor: | Jorge Lopez, G.A. Frank, Claudio Dorso |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
Phase transition NEUTRON STAR MATTER NUCLEAR PASTA Physics and Astronomy (miscellaneous) Proton NUCLEAR PHASE TRANSITIONS Nuclear Theory purl.org/becyt/ford/1.3 [https] Nuclear matter Radial distribution function 01 natural sciences Nuclear pasta purl.org/becyt/ford/1 [https] Neutron star 0103 physical sciences NUCLEAR SYMMETRY ENERGY Neutron MOLECULAR DYNAMICS Atomic physics Nuclear Experiment 010306 general physics Fermi gas |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
DOI: | 10.1007/s11467-020-1004-2 |
Popis: | In this review we study the nuclear pastas as they are expected to be formed in neutron star crusts. We start with a study of the pastas formed in nuclear matter (composed of protons and neutrons), we follow with the role of the electron gas on the formation of pastas, and we then investigate the pastas in neutron star matter (nuclear matter embedded in an electron gas). Nuclear matter (NM) at intermediate temperatures (1 MeV ≲ T ≲ 15 MeV), at saturation and sub-saturation densities, and with proton content ranging from 30% to 50% was found to have liquid, gaseous and liquid-gas mixed phases. The isospin-dependent phase diagram was obtained along with the critical points, and the symmetry energy was calculated and compared to experimental data and other theories. At low temperatures (T ≲ 1 MeV) NM produces crystal-like structures around saturation densities, and pasta-like structures at sub-saturation densities. Properties of the pasta structures were studied with cluster-recognition algorithms, caloric curve, the radial distribution function, the Lindemann coefficient, Kolmogorov statistics, Minkowski functionals; the symmetry energy of the pasta showed a connection with its morphology. Neutron star matter (NSM) is nuclear matter embedded in an electron gas. The electron gas is included in the calculation by the inclusion of an screened Coulomb potential. To connect the NM pastas with those in neutron star matter (NSM), the role the strength and screening length of the Coulomb interaction have on the formation of the pastas in NM was investigated. Pasta was found to exist even without the presence of the electron gas, but the effect of the Coulomb interaction is to form more defined pasta structures, among other effects. Likewise, it was determined that there is a minimal screening length for the developed structures to be independent of the cell size. Neutron star matter was found to have similar phases as NM, phase transitions, symmetry energy, structure function and thermal conductivity. Like in NM, pasta forms at around T ≈ 1.5 MeV, and liquid-to-solid phase changes were detected at T ≈ 0.5 MeV. The structure function and the symmetry energy were also found to depend on the pasta structures. Fil: López, Jorge A.. University of Texas at El Paso; Estados Unidos Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Frank, Guillermo Alberto. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |