Approximating vector scheduling: almost matching upper and lower bounds
Autor: | Nikhil Bansal, Tim Oosterwijk, Tjark Vredeveld, Ruben van der Zwaan |
---|---|
Přispěvatelé: | Discrete Mathematics, Combinatorial Optimization 1, QE Operations research, RS: GSBE ETBC |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Resource Augmentation
General Computer Science ComputingMilieux_LEGALASPECTSOFCOMPUTING 0102 computer and information sciences 02 engineering and technology 01 natural sciences Upper and lower bounds Article Scheduling (computing) Combinatorics NUMBER Vector Schedule 0202 electrical engineering electronic engineering information engineering Mathematics Discrete mathematics Multiprocessor Schedule Job shop scheduling Integer Linear Program Optimum Integer Solution Applied Mathematics Minimization problem Improved algorithm Double exponential function 020207 software engineering Running time Computer Science Applications UNIFORM PROCESSORS 010201 computation theory & mathematics Theory of computation Computer Science(all) |
Zdroj: | Algorithmica, 76(4), 1077-1096. Springer Algorithmica Algorithmica, 76(4), 1077-1096. Springer Verlag |
ISSN: | 0178-4617 |
Popis: | We consider the Vector Scheduling problem, a natural generalization of the classical makespan minimization problem to multiple resources. Here, we are given n jobs, represented as d-dimensional vectors in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^d$$\end{document}[0,1]d, and m identical machines, and the goal is to assign the jobs to machines such that the maximum load of each machine over all the coordinates is at most 1. For fixed d, the problem admits an approximation scheme, and the best known running time is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{f(\epsilon ,d)}$$\end{document}nf(ϵ,d) where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\epsilon ,d) = (1/\epsilon )^{\tilde{O}(d)}$$\end{document}f(ϵ,d)=(1/ϵ)O~(d) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}$$\end{document}O~ suppresses polylogarithmic terms in d). In particular, the dependence on d is double exponential. In this paper we show that a double exponential dependence on d is necessary, and give an improved algorithm with essentially optimal running time. Specifically, we let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (x)$$\end{document}exp(x) denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^x$$\end{document}2x and show that: (1) For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon 0$$\end{document}ϵ>0. (4) We complement these lower bounds with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}(1+ϵ)-approximation that runs in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \left( (1/\epsilon )^{O(d \log \log d)}\right) + nd$$\end{document}exp(1/ϵ)O(dloglogd)+nd. This gives the first efficient approximation scheme (EPTAS) for the problem. |
Databáze: | OpenAIRE |
Externí odkaz: |