Random PCR‐based genotyping by sequencing technology GRAS‐Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes
Autor: | Mitsuhiko Sano, Yohei Nakamura, Shotaro Hirase, Kusuto Nanjo, Sho Hosoya, Hiroyoshi Kohno, Kiyoshi Kikuchi |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
0301 basic medicine Genotyping Techniques Population Biology Polymerase Chain Reaction 010603 evolutionary biology 01 natural sciences Genetic analysis Gene flow 03 medical and health sciences Japan Genetics Animals Lutjanus fulvus Seawater education Genotyping Ecology Evolution Behavior and Systematics Islands education.field_of_study Contig Fishes Sequence Analysis DNA Amplicon Biota Genetics Population 030104 developmental biology Evolutionary biology Genetic structure Biotechnology |
Zdroj: | Molecular Ecology Resources. 19:1153-1163 |
ISSN: | 1755-0998 1755-098X |
Popis: | While various technologies for high-throughput genotyping have been developed for ecological studies, simple methods tolerant to low-quality DNA samples are still limited. In this study, we tested the availability of a random PCR-based genotyping-by-sequencing technology, genotyping by random amplicon sequencing, direct (GRAS-Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000-9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next-generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation-by-distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS-Di for fine-grained genetic analysis using field samples, including mangrove fishes. |
Databáze: | OpenAIRE |
Externí odkaz: |