Maximizing the capture velocity of molecular magneto-optical traps with Bayesian optimization
Autor: | M Stepanova, Silke Ospelkaus, T Poll, S Xu, P Kaebert, M Siercke |
---|---|
Rok vydání: | 2021 |
Předmět: |
Atomic Physics (physics.atom-ph)
Atom- und Molekülphysik Ultrakalte Gase General Physics and Astronomy FOS: Physical sciences Trapping Parameter space 01 natural sciences Physics - Atomic Physics 010305 fluids & plasmas laser cooling 0103 physical sciences magneto-optical trap ddc:530 Atomic and molecular physics Laser power scaling Physics::Atomic Physics 010306 general physics Dewey Decimal Classification::500 | Naturwissenschaften Bayesian optimization Physics Condensed Matter::Quantum Gases Range (particle radiation) Power (physics) ddc:500 Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik Atomic physics quantum gases cold molecules Realization (systems) Beam (structure) |
Zdroj: | New Journal of Physics 23 (2021), Nr. 6 |
DOI: | 10.48550/arxiv.2104.07984 |
Popis: | Magneto-optical trapping (MOT) is a key technique on the route towards ultracold molecular ensembles. However, the realization and optimization of magneto-optical traps with their wide parameter space is particularly difficult. Here, we present a very general method for the optimization of molecular magneto-optical trap operation by means of Bayesian optimization (BO). As an example for a possible application, we consider the optimization of a calcium fluoride (CaF) MOT for maximum capture velocity. We find that both the $X^2\Sigma^+\,$ to $A^2\Pi_{1/2}\,$ and the $X^2\Sigma^+\,$ to $B^2\Sigma^+\,$ transition to allow for capture velocities larger than $20$ m/s with $24$ m/s and $23$ m/s respectively at a total laser power of $200$ mW. In our simulation, the optimized capture velocity depends logarithmically on the beam power within the simulated power range of $25$ to $400$ mW. Applied to heavy molecules such as BaH and BaF with their low capture velocity MOTs it might offer a route to far more robust magneto-optical trapping. Comment: 15 pages, 9 figures |
Databáze: | OpenAIRE |
Externí odkaz: |