Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique

Autor: Zulkiflee Abd Latif, Yousif A. Hussin, Syaza Rozali, Alan Blackburn, Biswajeet Pradhan, Nor Aizam Adnan
Přispěvatelé: Department of Natural Resources, UT-I-ITC-FORAGES, Faculty of Geo-Information Science and Earth Observation
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Geocarto international, 3247-3264. Taylor & Francis
STARTPAGE=3247;ENDPAGE=3264;ISSN=1010-6049;TITLE=Geocarto international
ISSN: 1010-6049
Popis: The study involves an object-based segmentation method to extract feature changes in tropical rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance event that are represents the changes are examined by the classification of multisensor data; that is a highly accurate ALS with different resolutions of multispectral Landsat image. Disturbance Index (DI) derived from Tasseled Cap Transformation, Normalized Difference Vegetation Index (NDVI), and the ALS height are the variables for object-based segmentation process. The classification is categorized into two classes; disturbed and non-disturbed forest cover using Nearest Neighbor (NN), Random Forest (RF) and Support Vector Machine (SVM). The overall accuracy ranging from 88% to 96% and kappa ranging from 0.79 to 0.91. Mcnemar’s test p-value (
Databáze: OpenAIRE