Injection of Knowledge in a Sourcing Recommender System

Autor: Catherine Faron, Andrea G. B. Tettamanzi, Molka Tounsi Dhouib
Přispěvatelé: Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: WI-IAT'20-IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology
WI-IAT'20-IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Dec 2020, Melbourne / Virtual, Australia
HAL
WI/IAT
Popis: International audience; Recommender systems provide suggestions to users for items that best meet their needs. In this work, we study the benefits of using knowledge and, more specifically, a 'bag of concepts' representation to enhance a recommender system in the sourcing domain. We tested our approach in a real-world case study provided by the Silex company. The experimental results show that injecting knowledge in the recommendation process outperforms word embedding approaches.
Databáze: OpenAIRE