Graph-based Supervoxel Computation from Iterative Spanning Forest

Autor: Felipe Belém, Alexandre X. Falcão, Silvio Jamil Ferzoli Guimarães, Zenilton Kleber Gonçalves do Patrocínio, Laurent Najman, Sarah Almeida Carneiro, Carolina Stephanie Jerônimo de Almeida
Přispěvatelé: Pontifical Catholic University of Minas Gerais [Belo Horizonte], University of Campinas [Campinas] (UNICAMP), Laboratoire d'Informatique Gaspard-Monge (LIGM), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Universidade Estadual de Campinas (UNICAMP)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Discrete Geometry and Mathematical Morphology (DGMM)
Discrete Geometry and Mathematical Morphology (DGMM), May 2021, Uppsala, Sweden
Lecture Notes in Computer Science ISBN: 9783030766566
DGMM
Popis: Supervoxel segmentation leads to major improvements in video analysis since it generates simpler but meaningful primitives (i.e., supervoxels). Thanks to the flexibility of the Iterative Spanning Forest (ISF) framework and recent strategies introduced by the Dynamic Iterative Spanning Forest (DISF) for superpixel computation, we propose a new graph-based method for supervoxel generation by using iterative spanning forest framework, so-called ISF2SVX, based on a pipeline composed by four stages: (a) graph creation; (b) seed oversampling; (c) IFT-based superpixel delineation; and (d) seed set reduction. Moreover, experimental results show that ISF2SVX is capable of effectively describing the video’s color variation through its supervoxels, while being competitive for the remaining metrics considered.
Databáze: OpenAIRE