How Biochemical Environments Fine-Tune a Redox Process: From Theoretical Models to Practical Applications
Autor: | Goedele Roos, Ramón Alain Miranda-Quintana, Marco Martínez González |
---|---|
Přispěvatelé: | Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Lab Computat & Theoret Chem, Universidad de La Habana [Cuba], Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Work (thermodynamics) Context (language use) 010402 general chemistry Ligands 01 natural sciences Redox 03 medical and health sciences Oxidoreductase Catalytic Domain Materials Chemistry [CHIM]Chemical Sciences Oxidoreductases Acting on Sulfur Group Donors Physical and Theoretical Chemistry Quantum ComputingMilieux_MISCELLANEOUS chemistry.chemical_classification Molecular orbital theory Hydrogen Bonding Interaction energy 0104 chemical sciences Surfaces Coatings and Films [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry 030104 developmental biology chemistry Models Chemical 13. Climate action Chemical physics Scientific method Quantum Theory Thermodynamics Oxidation-Reduction Sulfur |
Zdroj: | Journal of Physical Chemistry B Journal of Physical Chemistry B, 2018, 122 (34), pp.8157-8165. ⟨10.1021/acs.jpcb.8b04736⟩ Journal of Physical Chemistry B, American Chemical Society, 2018, 122 (34), pp.8157-8165. ⟨10.1021/acs.jpcb.8b04736⟩ |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.8b04736⟩ |
Popis: | In this study, we give a new physical insight into how enzymatic environments influence a redox process. This is particularly important in a biochemical context, in which oxidoreductase enzymes and low-molecular-weight cofactors create a microenvironment, fine-tuning their specific redox potential. We present a new theoretical model, quantitatively backed up by quantum chemically calculated data obtained for key biological sulfur-based model reactions involved in preserving the cellular redox homeostasis during oxidative stress. We show that environmental effects can be quantitatively predicted from the thermodynamic cycle linking ΔΔG(OX/RED)ref–ligand values to the differential interaction energy ΔΔGint of the reduced and oxidized species with the environment. Our obtained data can be linked to hydrogen-bond patterns found in protein active sites. The thermodynamic model is further understood in the framework of molecular orbital theory. The key insight of this work is that the intrinsic properties of ne... |
Databáze: | OpenAIRE |
Externí odkaz: |