A genome-wide linkage scan identifies multiple quantitative trait loci for HDL-cholesterol levels in families with premature CAD and MI
Autor: | Qing Kenneth Wang, Sara B. Seidelmann, Rong Yang, Lin Li, Kalil G. Abdullah, Robert C. Elston, Shaoqi Rao, Gong Qing Shen, Eric J. Topol, Qiuyun Chen, Sonia Sharma, Kenneth G. MacKinlay |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Male
Linkage disequilibrium Quantitative Trait Loci Population Single-nucleotide polymorphism Locus (genetics) Genome-wide association study QD415-436 Biology Quantitative trait locus Biochemistry Linkage Disequilibrium Sex Factors Endocrinology single nucleotide polymorphism high density lipoprotein cholesterol Chromosomes Human Humans genetics Cloning Molecular education Genetics Likelihood Functions education.field_of_study Cholesterol HDL Age Factors Chromosome Mapping Cell Biology Transmission disequilibrium test Middle Aged Heritability myocardial infarction Female linkage coronary artery disease Research Article Genome-Wide Association Study |
Zdroj: | Journal of Lipid Research, Vol 51, Iss 6, Pp 1442-1451 (2010) |
ISSN: | 0022-2275 |
Popis: | Plasma HDL cholesterol levels (HDL-C) are an independent predictor of coronary artery disease (CAD). We have completed a genome-wide linkage scan for HDL-C in a US cohort consisting of 388 multiplex families with premature CAD (GeneQuest). The heritability of HDL-C in GeneQuest was 0.37 with gender and age as covariates (P = 5.1 x 10(-4)). Two major quantitative trait loci (QTL) for log-transformed HDL-C adjusted for age and gender were identified onto chromosomes 7p22 and 15q25 with maximum multipoint logarithm of odds (LOD) scores of 3.76 and 6.69, respectively. Fine mapping decreased the 7p22 LOD score to a nonsignificant level of 3.09 and split the 15q25 QTL into two loci, one minor QTL on 15q22 (LOD = 2.73) that spanned the LIPC gene, and the other at 15q25 (LOD = 5.63). A family-based quantitative transmission disequilibrium test (QTDT) revealed significant association between variant rs1800588 in LIPC and HDL-C in the GeneQuest population (P = 0.0067), which may account for the minor QTL on 15q22. The 15q25 QTL is the most significant locus identified for HDL-C to date, and these results provide a framework for the ultimate identification of the underlying HDL-C variant and gene on chromosomes 15q25, which will provide insights into novel regulatory mechanisms of HDL-C metabolism. |
Databáze: | OpenAIRE |
Externí odkaz: |