Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms
Autor: | Jichao Zhao, Brian J. Hansen, Anuradha Kalyanasundaram, Aleksei Mikhailov, Vadim V. Fedorov, Shane S. Scott, Ning Li, John D. Hummel, Esthela J. Artiga, Megan Subr |
---|---|
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
030204 cardiovascular system & hematology Article 03 medical and health sciences Imaging Three-Dimensional 0302 clinical medicine Artificial Intelligence Optical mapping Atrial Fibrillation Humans Medicine Repolarization Heart Atria Molecular Biology business.industry Mechanism (biology) Myocardium Human heart Atrial fibrillation medicine.disease Electrophysiological Phenomena Electrophysiology 030104 developmental biology Atrial myocardium Animal studies Cardiology and Cardiovascular Medicine business Neuroscience |
Zdroj: | J Mol Cell Cardiol |
ISSN: | 0022-2828 |
DOI: | 10.1016/j.yjmcc.2020.10.012 |
Popis: | Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with the high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments. |
Databáze: | OpenAIRE |
Externí odkaz: |