Individual upper semicontinuity and subgame perfect ϵ-equilibria in games with almost perfect information
Autor: | Jasmine Maes, János Flesch, Arkadi Predtetchinski, P. Jean-Jacques Herings |
---|---|
Přispěvatelé: | RS: GSBE Theme Conflict & Cooperation, QE Math. Economics & Game Theory, RS: GSBE Theme Data-Driven Decision-Making, Microeconomics & Public Economics, RS: GSBE other - not theme-related research |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Economics and Econometrics
Computer Science::Computer Science and Game Theory Infinite game Stochastic game Perfect information Time horizon Function (mathematics) individual upper semicontinuity Subgame perfect epsilon-equilibrium Action (physics) Subgame perfect equilibrium almost perfect information subgame perfect ϵ-equilibrium Strategy Mathematical economics Mathematics |
Zdroj: | Economic Theory, 73(2-3), 695-719. Springer Verlag |
ISSN: | 0938-2259 |
DOI: | 10.1007/s00199-019-01201-y |
Popis: | We study games with almost perfect information and an infinite time horizon. In such games, at each stage, the players simultaneously choose actions from finite action sets, knowing the actions chosen at all previous stages. The payoff of each player is a function of all actions chosen during the game. We define and examine the new condition of individual upper semicontinuity on the payoff functions, which is weaker than upper semicontinuity. We prove that a game with individual upper semicontinuous payoff functions admits a subgame perfect $$\epsilon $$ ϵ -equilibrium for every $$\epsilon >0$$ ϵ > 0 , in eventually pure strategy profiles. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |