Convergence of equilibria for numerical approximations of a suspension model
Autor: | Pavlo O. Kasyanov, José Valero, Ángel Giménez, O. V. Kapustyan, José M. Amigó |
---|---|
Rok vydání: | 2016 |
Předmět: |
Partial differential equation
Approximations of π 010102 general mathematics Mathematical analysis hp-FEM Fixed point 01 natural sciences Backward Euler method Stationary point Local convergence 010101 applied mathematics Computational Mathematics Computational Theory and Mathematics Modeling and Simulation Convergence (routing) 0101 mathematics Mathematics |
Zdroj: | Computers and Mathematics with Applications |
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2016.05.034 |
Popis: | In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions.First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation.Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well.Finally, numerical simulations are provided. |
Databáze: | OpenAIRE |
Externí odkaz: |