Convergence of equilibria for numerical approximations of a suspension model

Autor: Pavlo O. Kasyanov, José Valero, Ángel Giménez, O. V. Kapustyan, José M. Amigó
Rok vydání: 2016
Předmět:
Zdroj: Computers and Mathematics with Applications
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.05.034
Popis: In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions.First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation.Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well.Finally, numerical simulations are provided.
Databáze: OpenAIRE