Serotonin as a putative scavenger of hypohalous acid in the brain
Autor: | Thomas M. Jeitner, Mike Kalogiannis, E. James Delikatny |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Male Serotonin Antioxidant Hypochlorous acid Halogenation THP-1 Cells medicine.medical_treatment Pharmacology Serotonergic medicine.disease_cause Article 03 medical and health sciences chemistry.chemical_compound Mice 0302 clinical medicine Extracellular medicine Animals Humans Ketoglutarate Dehydrogenase Complex Molecular Biology 5-HT receptor biology Chemistry Brain Free Radical Scavengers Hypochlorous Acid Oxidative Stress 030104 developmental biology Biochemistry Myeloperoxidase biology.protein Molecular Medicine 030217 neurology & neurosurgery Oxidative stress |
Zdroj: | Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1862(4):651-661 |
ISSN: | 0925-4439 |
DOI: | 10.1016/j.bbadis.2015.12.012 |
Popis: | Neurodegenerative disorders represent the culmination of numerous insults including oxidative stress. The long etiology of most of these disorders suggests that lessening the effects of one or more of the insults could significantly delay disease onset. Antioxidants have been tested as possible therapeutics for neurodegenerative disorders, but with little success. Here we report that serotonin acts as a scavenger of hypochlorous acid (HOCl) in the brain. Serotonin was shown to prevent the oxidation of 2-thio-5-nitrobenzoate by HOCl in a biphasic manner. The first phase was a partial scavenging that occurred at concentrations of serotonin that exceeded those of HOCl. 1H-NMR studies indicated that HOCl chlorinates both the aryl and akyl nitrogen atoms of serotonin. Thus, the oxidation of 2-thio-5-nitrobenzoate that occurred during the first phase of scavenging is likely due to the formation of serotonergic chloramines. A second phase of scavenging occurred at concentrations of HOCl that exceeded those of serotonin. Under these conditions, the chlorinated serotonin polymerized and formed inert aggregates. Serotonin was further shown to prevent the loss of cells and cellular α-ketoglutarate dehydrogenase complex activity caused by HOCl. Extracellular concentrations of serotonin in the brain can be elevated with selective serotonin reuptake inhibitors and suggests that such compounds could be used to increase the cerebral antioxidant capacity. Acute administration of selective serotonin reuptake inhibitors to mice treated with endotoxin partially mitigated sickness behavior and protein chlorination in the brain. These observations suggest that serotonin may act to suppress chlorinative stress in the brain. |
Databáze: | OpenAIRE |
Externí odkaz: |