Controllability of (max,+) Formal Power Series
Autor: | Jean-Louis Boimond, Sébastien Lahaye, Jan Komenda |
---|---|
Přispěvatelé: | Institute of Mathematics of the Czech Academy of Science (IM / CAS), Czech Academy of Sciences [Prague] (CAS), Laboratoire d'Ingéniérie des Systèmes Automatisés (LISA), Université d'Angers (UA), Gerard, Marie-Françoise |
Rok vydání: | 2009 |
Předmět: |
Discrete mathematics
0209 industrial biotechnology Formal power series Multivariable calculus 02 engineering and technology Extension (predicate logic) Automaton Controllability 020901 industrial engineering & automation Tensor product Control theory 0202 electrical engineering electronic engineering information engineering Hadamard product 020201 artificial intelligence & image processing ComputingMilieux_MISCELLANEOUS Computer Science::Formal Languages and Automata Theory Mathematics |
Zdroj: | IFAC Workshop on Dependable Control of Discrete Systems (DCDS'09) IFAC Workshop on Dependable Control of Discrete Systems (DCDS'09), Jun 2009, Bari, Italy |
ISSN: | 1474-6670 |
DOI: | 10.3182/20090610-3-it-4004.00020 |
Popis: | Controllability of (max,+) automata and formal power series is studied within a behavioral framework. An extension of classical tensor product of their linear representations as a parallel composition of controller with the plant (max,+) automaton is used. Controllability is studied using residuation theory of (multivariable) formal power series and (max,+)-counterpats of supremal controllable behaviors are derived. |
Databáze: | OpenAIRE |
Externí odkaz: |