Permutation Tests for Reflected Symmetry
Autor: | Lixing Zhu, Georg Neuhaus |
---|---|
Rok vydání: | 1998 |
Předmět: |
Statistics and Probability
Numerical Analysis Mathematics::Combinatorics Partial permutation Bit-reversal permutation Parity of a permutation Multivariate normal distribution Generalized permutation matrix Random permutation Cyclic permutation Combinatorics Permutation empirical characteristic function empirical process permutation tests reflected symmetry validity of test Statistics Probability and Uncertainty Mathematics |
Zdroj: | Journal of Multivariate Analysis. 67(2):129-153 |
ISSN: | 0047-259X |
DOI: | 10.1006/jmva.1997.1697 |
Popis: | The paper presents a permutation procedure for testing reflected (or diagonal) symmetry of the distribution of a multivariate variable. The test statistics are based in empirical characteristic functions. The resulting permutation tests are strictly distribution free under the null hypothesis that the underlying variables are symmetrically distributed about a center. Furthermore, the permutation tests are strictly valid if the symmetric center is known and are asymptotic valid if the center is an unknown point. The equivalence, in the large sample sense, between the tests and their permutation counterparts are established. The power behavior of the tests and their permutation counterparts under local alternative are investigated. Some simulations with small sample sizes (⩽20) are conducted to demonstrate how the permutation tests works. |
Databáze: | OpenAIRE |
Externí odkaz: |