Loss of centromere function drives karyotype evolution in closely related Malassezia species
Autor: | Sheng Sun, Thomas L. Dawson, Giuseppe Ianiri, Christian Tellgren-Roth, Rakesh Netha Vadnala, Kaustuv Sanyal, Sundar Ram Sankaranarayanan, Marco A. Coelho, Bhagya C. Thimmappa, Rahul Siddharthan, Promit Ganguly, Md. Hashim Reza, Joseph Heitman |
---|---|
Rok vydání: | 2020 |
Předmět: |
Chromosome fusion
QH301-705.5 Double-strand breaks Science Skin microbe Biology Genome General Biochemistry Genetics and Molecular Biology DNA sequencing 03 medical and health sciences Dicentric chromosome chemistry.chemical_compound 0302 clinical medicine Dicentric Centromere Genetics Biology (General) Genetik 030304 developmental biology Synteny 0303 health sciences integumentary system General Immunology and Microbiology General Neuroscience Karyotype General Medicine Kinetochore chemistry Medicine Chromosome breakage 030217 neurology & neurosurgery DNA |
Zdroj: | eLife, Vol 9 (2020) |
ISSN: | 2050-084X |
DOI: | 10.7554/elife.53944 |
Popis: | Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3–5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome–chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation. |
Databáze: | OpenAIRE |
Externí odkaz: |