Prognostic model of long-term advanced stage (IIIB-IV) EGFR mutated non-small cell lung cancer (NSCLC) survivors using real-life data
Autor: | Ana Royuela, Maria Saigi, Blanca de Vega, Edel del Barco, Delvys Rodriguez-Abreu, Natividad Martínez-Banaclocha, David Aguiar, Joaquim Bosch-Barrera, R. Bernabé, M.A. Sala, Fernando Franco, Juana Oramas, A. Padilla, J. Casal, Mariano Provencio, Gretel Benítez, Remei Blanco, Ainhoa Hernández, Lourdes Gutiérrez, Enric Carcereny, O. Juan-Vidal, Ana Laura Ortega, R. López-Castro, Carlos Camps, M. Guirado, José Luis González-Larriba, Manuel Domine, Rosario García-Campelo, Bartomeu Massuti |
---|---|
Přispěvatelé: | UAM. Departamento de Medicina |
Rok vydání: | 2021 |
Předmět: |
Male
Oncology Cancer Research medicine.medical_specialty Lung Neoplasms Medicina EGFR non-small cell lung cancer (NSCLC) Logistic regression Nomogram Cancer Survivors Non-small cell lung cancer Surgical oncology Carcinoma Non-Small-Cell Lung Internal medicine Biomarkers Tumor Genetics medicine Humans Lung cancer RC254-282 Aged Retrospective Studies Models Statistical business.industry Research Advanced stage Neoplasms. Tumors. Oncology. Including cancer and carcinogens Chemoradiotherapy Middle Aged Prognosis medicine.disease Real life data Predictive modeling ErbB Receptors Survival Rate Nomograms Mutation Prognostic model Female Long survival business Follow-Up Studies |
Zdroj: | Biblos-e Archivo. Repositorio Institucional de la UAM instname Bmc Cancer r-IIS La Fe. Repositorio Institucional de Producción Científica del Instituto de Investigación Sanitaria La Fe BMC Cancer r-FISABIO. Repositorio Institucional de Producción Científica BASE-Bielefeld Academic Search Engine r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol BMC Cancer, Vol 21, Iss 1, Pp 1-11 (2021) BMC CANCER r-FIHGUV. Repositorio Institucional de Producción Científica de la Fundación de Investigación del Hospital General de Valencia r-ISABIAL. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica y Sanitaria de Alicante |
ISSN: | 1471-2407 |
Popis: | Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Background There is a lack of useful diagnostic tools to identify EGFR mutated NSCLC patients with long-term survival. This study develops a prognostic model using real world data to assist clinicians to predict survival beyond 24 months. Methods EGFR mutated stage IIIB and IV NSCLC patients diagnosed between January 2009 and December 2017 included in the Spanish Lung Cancer Group (SLCG) thoracic tumor registry. Long-term survival was defined as being alive 24 months after diagnosis. A multivariable prognostic model was carried out using binary logistic regression and internal validation through bootstrapping. A nomogram was developed to facilitate the interpretation and applicability of the model. Results 505 of the 961 EGFR mutated patients identified in the registry were included, with a median survival of 27.73 months. Factors associated with overall survival longer than 24 months were: being a woman (OR 1.78); absence of the exon 20 insertion mutation (OR 2.77); functional status (ECOG 0–1) (OR 4.92); absence of central nervous system metastases (OR 2.22), absence of liver metastases (OR 1.90) or adrenal involvement (OR 2.35) and low number of metastatic sites (OR 1.22). The model had a good internal validation with a calibration slope equal to 0.781 and discrimination (optimism corrected C-index 0.680). Conclusions Survival greater than 24 months can be predicted from six pre-treatment clinicopathological variables. The model has a good discrimination ability. We hypothesized that this model could help the selection of the best treatment sequence in EGFR mutation NSCLC patients. |
Databáze: | OpenAIRE |
Externí odkaz: |