Assembly of classifiers to determine the academic profile of students

Autor: Alexa Naveda, Karina Rojas, Jesús Silva, Claudia Medina, Carlos Vargas Mercado, Rosio Barrios
Rok vydání: 2020
Předmět:
Zdroj: ANT/EDI40
Procedia Computer Science
REDICUC-Repositorio CUC
Corporación Universidad de la Costa
instacron:Corporación Universidad de la Costa
ISSN: 1877-0509
DOI: 10.1016/j.procs.2020.03.102
Popis: The assembly methods, or combination of models, arise with the purpose of improving the accuracy of predictions. An assembly contains a number of apprentices (base models) which, when of the same type are called homogeneous and if of different, heterogeneous. The characteristic is that these apprentices do not perform well. The assembly is generated using another algorithm that combines the apprentices, examples of which are the majority vote, the decision table and the neural networks [1]. This article proposes the use of an assembly of classifiers to determine the academic profile of the student, based on the student’s overall average and data related to educational factors.
Databáze: OpenAIRE