Realizability of Polytopes as a Low Rank Matrix Completion Problem
Autor: | Michael Gene Dobbins |
---|---|
Rok vydání: | 2014 |
Předmět: |
Containment (computer programming)
Relation (database) Low-rank approximation Polytope Theoretical Computer Science Moduli space Combinatorics Set (abstract data type) Mathematics::Algebraic Geometry Computational Theory and Mathematics Realizability FOS: Mathematics Mathematics - Combinatorics Mathematics::Metric Geometry Discrete Mathematics and Combinatorics Combinatorics (math.CO) Geometry and Topology Mathematics |
Zdroj: | Discrete & Computational Geometry. 51:761-778 |
ISSN: | 1432-0444 0179-5376 |
DOI: | 10.1007/s00454-014-9599-0 |
Popis: | This article gives necessary and sufficient conditions for a relation to be the containment relation between the facets and vertices of a polytope. Also given here, are a set of matrices parameterizing the linear moduli space and another set parameterizing the projective moduli space of a combinatorial polytope. |
Databáze: | OpenAIRE |
Externí odkaz: |