An interior penalty method for optimal control problems with state and input constraints of non-linear systems
Autor: | Nicolas Petit, Paul Malisani, F. Chaplais |
---|---|
Přispěvatelé: | EDF R&D (EDF R&D), EDF (EDF), Centre Automatique et Systèmes (CAS), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
0209 industrial biotechnology
Mathematical optimization Control and Optimization Property (programming) 0211 other engineering and technologies 02 engineering and technology Constructive [SPI.AUTO]Engineering Sciences [physics]/Automatic optimal control 020901 industrial engineering & automation Simple (abstract algebra) Control theory penalty design Penalty method Mathematics 021103 operations research Applied Mathematics state constraints State (functional analysis) Optimal control Nonlinear system Control and Systems Engineering Benchmark (computing) constraints interior methods Software |
Zdroj: | Optimal Control Applications and Methods Optimal Control Applications and Methods, Wiley, 2014, pp.10.1002/oca.2134. ⟨10.1002/oca.2134⟩ |
ISSN: | 0143-2087 1099-1514 |
DOI: | 10.1002/oca.2134. |
Popis: | SUMMARY This paper exposes a methodology to solve state and input constrained optimal control problems for nonlinear systems. In the presented ‘interior penalty’ approach, constraints are penalized in a way that guarantees the strict interiority of the approaching solutions. This property allows one to invoke simple (without constraints) stationarity conditions to characterize the unknowns. A constructive choice for the penalty functions is exhibited. The property of interiority is established, and practical guidelines for implementation are given. A numerical benchmark example is given for illustration. © 2014 The Authors. Optimal Control Applications and Methods published by John Wiley & Sons, Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |