Comparative analysis of retinal ganglion cell damage in three glaucomatous rat models
Autor: | Chao Xing, Wan-Jing Huang, Min Wang, Shenghai Zhang, Feng-Juan Gao, Ping Xu, Fang-Yuan Hu, Jihong Wu, Xinghuai Sun |
---|---|
Rok vydání: | 2018 |
Předmět: |
Retinal Ganglion Cells
medicine.medical_specialty Intraocular pressure genetic structures H&E stain Nerve fiber layer Glaucoma Tonometry Ocular 03 medical and health sciences Cellular and Molecular Neuroscience chemistry.chemical_compound 0302 clinical medicine Retinal Diseases Ophthalmology Electroretinography medicine Animals Rats Wistar Fluorescent Antibody Technique Indirect Intraocular Pressure Retina business.industry Retinal medicine.disease eye diseases Sensory Systems Rats Disease Models Animal medicine.anatomical_structure chemistry Retinal ganglion cell 030221 ophthalmology & optometry sense organs business 030217 neurology & neurosurgery Photopic vision |
Zdroj: | Experimental Eye Research. 172:112-122 |
ISSN: | 0014-4835 |
DOI: | 10.1016/j.exer.2018.03.019 |
Popis: | Progressive retinal ganglion cell (RGC) death is the major cause of retinal nerve fiber layer thinning and visual field defects in glaucoma. The purpose of this study was to compare RGC damage in three commonly used glaucomatous rat models. These models were generated by (i) injection of paramagnetic microbeads into the anterior chamber; (ii) cauterization of three episcleral veins of the eye (EVC); and (iii) intravitreal injection of N-Methyl-D-Aspartate (NMDA). Intraocular pressure (IOP) was measured with a rebound tonometer at 6, 12, and 18 h; 1, 3, and 5 days; and 1, 2, 3, 4, 6, and 8 weeks. We measured the RGC density of the three glaucomatous models in the flat-mounted retina by immunofluorescence. Subsequently, the thicknesses of both retinal ganglion cell layer (GCL) and inner retinal layer (IRL) were analyzed by hematoxylin and eosin staining of retinal sections. The visual functional deterioration was evaluated by measurement of the photopic negative response (PhNR) of different models. The IOP averages during three weeks were 22.35 ± 1.23 mmHg (mean ± SD), 20.91 ± 1.97 mmHg, and 9.67 ± 0.42 mmHg, with 50.2%, 44.00% and 66.76% RGC loss by 8 weeks, respectively, in the microbead group, EVC group and NMDA group. Decreased thickness in the GCL was observed in all three groups, while the thickness of IRL and ONL was decreased in the EVC and NMDA groups. Significant positive correlation of RGC loss rate with ΔIOP integral were demonstrated in both microbead and EVC models. Moreover, we found that the PhNR amplitudes declined early by the first day in the NMDA group, 5 days later in the EVC group and by 7 days in the microbead group. Each glaucomatous rat model has its strength and weakness. Our study provides detailed data for choosing suitable animal models to advance glaucoma research. |
Databáze: | OpenAIRE |
Externí odkaz: |