Lecture hall $P$-partitions
Autor: | Petter Brändén, Madeleine Leander |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mathematics::Combinatorics
Generalization 010102 general mathematics Physics::Physics Education Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 01 natural sciences Lecture hall Combinatorics 0103 physical sciences FOS: Mathematics Mathematics - Combinatorics Combinatorics (math.CO) 010307 mathematical physics 0101 mathematics Mathematics Generating function (physics) |
Zdroj: | Journal of Combinatorics. 11:391-412 |
ISSN: | 2150-959X 2156-3527 |
DOI: | 10.4310/joc.2020.v11.n2.a9 |
Popis: | We introduce and study s-lecture hall P-partitions which is a generalization of s-lecture hall partitions to labeled (weighted) posets. We provide generating function identities for s-lecture hall P-partitions that generalize identities obtained by Savage and Schuster for s-lecture hall partitions, and by Stanley for P-partitions. We also prove that the corresponding (P,s)-Eulerian polynomials are real-rooted for certain pairs (P,s), and speculate on unimodality properties of these polynomials. |
Databáze: | OpenAIRE |
Externí odkaz: |